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The plane problem of interaction between the surface of a substance and a power- 

ful incident radiation stream is considered. It is assumed that the length of the 
incident external radiation path is of the order of the thickness of the heated 

substance vapor layer and the re-emission is three-dimensional. When the radi- 
ation of the substance itself is considerable, the energy equation can be substan- 
tially simplified and in some cases reduced to a simple algebraic relationship 

between parameters. Self-similar solutions are derived and some numerical 
results of these presented. 

1. Let a powerful stream of monochromatic radiation in the optical range impinge 
on the surface of a solid body, causing evaporation of its substance and heating the layer 
of its vapor to a high temperature. If the latter is considerably higher than the phase 
transition temperature T, and the specific inner energy e substantially exceeds the 
specific heat of evaporation Qv, it can be assumed that T," = Q, = 0. Owing to the 
dispersion of vapor, a reaction force acts on the solid body surface, creating a fairly high 

pressure pr (which in our formulation of the problem is an unknown parameter) in the 
body itself. The dispersion velocities u of the hot layer are considerably higher than 

the velocities ui of motion in the cold dense substance subjected to the effect of the 
reaction force (from the energy release zone in the direction of the radiation stream). 

Density p in the hot layer is considerably reduced in comparison with the solid body 

density f)i, hence the specific volume u > ur. 
On these assumptions the problem can be stated as follows: the radiation impinges on 

a gas which initially is infinitely dense, absolutely cold, and immobile, i. e. u1 = el = 

Ul = 0. This formulation has been already used in solving the problem of the effect 
of powerful streams of monochromatic radiation [l - 31 in which only the radiation 
from the source was taken into account. 

In the present paper the effect of re-emission by the highly heated vapor layer is 
taken into consideration. It is assumed that the heat losses due to own radiation are 
purely three-dimensional, which is obvious in the case of a completely ionized gas [4, 

51. The expressions for specific volume luminescence and the coefficient of mass radi- 
ation absorption are of the form 

f = f” (e) ~“1, 3c, = XL (e) plJz (1.1) 

where p1 and pa are constants, and f” (e) and ‘xc (e) .are given functions of e. Note 
that in the region of total ionization 

P1 = PZ = P (1.2) 

and p = 1. 
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For an incompletely ionized gas, particularly in the region of multiple ionization, it 
is possible to approximate functions f and 1Go by formulas (1.1) in which case Pt and 

flI are close to each other. To simplify the subsequent analysis we assume that condi- 

tion (1.2) is always satisfied. 

The effect of re-emission is twofold: a part of the energy stream emitted by the layer 
of hot gas leaves the body, while another part is directed toward its surface (in our for- 

mulation of the problem toward the cold and dense layers of gas below the “hot zone”). 
Absorption of this energy generates heat and motion in layers under the zone of intensive 
re-emission. 

Below we consider parameters only in the hot region on the assumption that it is pos- 
sible to neglect the motion and heating of vapors below the zone of intensive re-emission. 

2. The system of equations of motion, continuity, energy, incident radiation transport, 

and of state for a one-dimensional plane motion of gas heated by radiation, with allow- 
ance for three-dimensional emission of radiation of the continuous spectrum, is 

$+&o, &+o 

!L+p+-_f-$L, A_; 
(2.1) 

- %oc7, e=pv 
T--I 

where m is the Lagrangian mass coordinate taken from the boundary between gas and 
vacuum, t is the time, Q is the density of the incident monochromatic radiation stream, 

and 7 is effective adiabatic exponent. Functions f and x0 are defined by formulas(l.l). 

In conformity with the formulation of the problem given in Sect. 1 the initial and 
boundary conditions are defined by 

u (m, 0) = u (m, 0) =-: e (m, 0) = 0 

q (0, t) = 40 (t), P (07 4 = 0 

(2.2) 

(2.3) 

The fundamental premise of the subsequent analysis is the assumption that in the case 

of substantial re-emission the internal energy and work produced by the expansion of 
gas can be neglected, i. e. it is possible to neglect the left-hand side of the equation, 
which is small in comparison with the two terms in its right-hand side (validity of this 

assumption will be proved below). 
As the result, the equation of energy in system (2.1) is replaced (with allowance for 

the equation of transport) by a certain expression of the form 

f = Xoq or q = $f$- E cp (e) (2.4) 

which defines the relation between q and e . 

3. Let us consider the case of gas heated by a stream of monochromatic radiation 
of constant density q,, (t) z q. = const. It then follows from formula (2.4) that the 
inner energy e, at the boundary of gas and vacuum is also constant. We take this energy 
as typical for our problem. We point out that in this case cp (e) is an arbitrary function 
of e which. for instance, can be specified in a tabulated form (the only requirement 
imposed on ‘p (e) is that it must be monotonic within the range of variation of charac- 
teristic parameters in every specific variamof the problem). The effective adiabatic 
exponent y in this case, can also be considered as a given function of e, however, for 
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simplicity of calculation we shall assume y = const, 
We introduce self-similar variables defined by formulas 

p (m, q = (y - ti)l-%?g1-@ A-T?-“P (p) 

0 (m, q = (y - l)“~%~“~2AStsV (p) 

u (m, t) = (y - 1)‘;2 f?~‘~~ U (p) 

e (m, t) = eoE (p), q h t) = %Q (P) (3.1) 

m = fr _ j)PSP4S'2 A-"@"p, $ = 1 / (p + j), A = x0 k) 

For a completely ionized gas P = 1 , and from (3.1) we obtain the following laws of 
variation with time of pressure, density, and the characteristic quantity of the heated 

The characteristic quantities of inner energy e (and temperature T) and of dispersion 
velocity u do not vary with time. let us compare these formulas with the solution of 

a similar problem [ 1, 23 

P N t-5 1 P” t-V*, m - tat“, e N t’.i, u, N t’ia 

in which no allowance is made for re-emission. 

At the instant at which the effect of re-emission becomes considerable (t = t,) 

the characteristic parameters determined in [l, 21 and those of the self-similar solution 
considered here are close to each other. 

Comparing the time-de~ndence of parameters obtained here, we come to the con- 
clusion that in both cases the characteristic dispersion velocities are close to each other 
even after a very considerable time from the beginning of intensive re-emission (t s 

t,). Temperatures and densities differ only slightly, while pressures differ (by, say, one 

order) only for times which considerably exceed (by, say, two orders) the time elapsed 
between the commencement of radiation and the beginning of intensive re-emission . 

Re-emission of virtually the whole supplied energy begins at the same time. In fact, 
during the period of time exceeding by two orders t,, the kinetic energy and the inner 
energy of a unit mass remain unchanged, while the mass increases by one order, which 

means that the total energy represents approximately “I,,-th of supplied energy. The 
momentum created by the dispersion of the vapor layer also increases by one order, 
owing to the increase of mass. Thus, in spite of intensive re-emission, the dispersing 

vapors continue to exert a mechanical action, albeit a somewhat weaker one, on the 
deeper layers of the substance. (We recall that the effects related to the motion below 

the “hot zone” induced by absorption of radiation energy are not considered here). 
We introduce the notation 

F-=:-L 
1’(4 ’ 

K”$ o-* 

Using this notation, from (2. I) we obtain the following system of ordinary differential 
equations : 

-&III [Q(E)]) E' = - K(E) E-'PP (3.2) 
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E = PV, Q = @ (E) = F (E)/K(E) 

where the prime indicates differentiation with respect to p-L_ The initial and boundary 
conditions (2.2) and (2.3) are now represented by the following system of boundary con- 
dition : p-_-O, E=1 for p=o 

V1=;E=U-O for p==l.ri (3.3) 

For any a priory specified functions F (E) and K (E) the system {3.2),(3.3) 
can be numerically integrated. 

4. Let the dependence of the density of incident radiation stream on time be defined 

by the power law 
@) (t) = q”tn, n > 0 (4.1) 

and let f” (e) and xU (e) be power functions of their arguments 

f’ (e) = J+es, xP (ef := h-,eP (4.2) 

where q”, k, and k, are dimensional constants. Then Q: (e) in (2.4) is also a power 
function of e, and from (2.4) we obtain for the characteristic quantity e, the following 
expression in terms of power function of t 

ea = kstn’@‘, o = 6 + a, k, = (ifk, i kl)laW (4.3) 

For a completely ionized gas we have: a = y!z, 6 z ii,, e) -_ 2, k, - eO-a, t?, N 

&o-t, where e. is the energy of monochromatic radiation quanta. 
Introducing self-similar variables by formulas 

p (m, t) = (y _ I)l-S’2/Ex-SJC~(r+,+‘,,)~gt, tP) 

u (m, 2) = (y - 1)“~2kx*k:(“2-z)tdV (p) 

u (m, t) = (y - l)‘~‘~k~“~t’~~‘wU(~) 

e (m, t) =- k,tnu E (pL), !I (m, t) =z s’t”Q (p) 

m = & _ j)““!2 k,” kp+P Z’Q, 

s = li@ -t I), g=s 
1 

- 1 + $ (13 + a -i- l/2)] 

d=s 1+ 
II 

$ (“jz - a)], c = “[B + $ (x .+- P/Z)] 

we obtain the following system of self-similar equations : 

-&zLqlu’+P’= 0 

(4.4) 

Boundary conditions (3.3) remain unchanged. 
The looked for solution obviously corresponds to a heating wave spreading over the 

background with zero values of u, V and h’ and generating ahead of itself, similarly 
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to a piston, a region of increased pressure P = P, up to p = 00, where the shock- 
wave front which converts the state of gas from U = V = P = 0 to U = V == 0 
and P = P, = const is present. It can be shown that the assumption (2.4) is asymp- 
totically satisfied. 

In fact, for each fixed lo the terms addt and pav,idt vary with time as trio-r and the 

terms f and aq/arn as tn+, and for sufficiently great t the first of these are small in 
comparison with the second, if condition 

~/o[(P’~1~(~--)+~+P/21<1 (4.6) 
is satisfied. 

For n -= 0 (constant stream) inequality (4.6) is satisfied for any a, p and U. In the 

particular case of a completely ionized gas the expression in brackets in (4.6) vanishes, 

hence the inequality (4.6) is satisfied for any n. 
Owing to the considerable number of possible combinations of parameters a, 6 and 

cl) , these are not considered here. We stress, however, that for every set of a, fi and (I) 

the admissible values of n are determined by the condition of fulfilment of inequality 

(4.6). 
Inequality (4.6) was derived on the assumption that the proportionality coefficients 

in the considered power formulas (the dimensionless functions of self-similar variable 
P) are of the order of unity. Since at poinr lo = U (the boundary with vacuum) f = 
x 0 = (1, the assumption (2.4) is, evidently, not satisfied there. 

Points it r== 0 and /A = pi are singular points of system (4.5). In the right neighbor- 
hood of point p =- 0 we have the following laws of variation of functions (correct to 
within magnitudes of higher order of smallness) : 

(4.7) 

p = Dr (- In Gp))l’*, U = - % D (- In (c+)) (n > 6) (4.8) 

where U, and C2 > 0 are arbitrary constants. In this case E can be calculated by 
formula 

(4.9) 
0 

Note that the gas discharge velocity into vacuum is infinite, as in the case of isothermal 
dispersion. 

In the left neighborhood of l.i = 111 we have 

E= 

P = (PI2 - 2~~p~2E)“~, P - PI 
U=-$- 

(4.10) 

Expansion of the self-similar variables in the neighborhood of the singular point p = 0 
yields 

$ + p 2 = Citnio-1 

where Cl is a constant and f and dq / dm are, in turn, represented in the form of 
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constants multiplied by Pa (CL) tnec, with P (p) increasing with /r at a rate not lower 
than linear. 

Comparison of the derived formulas shows that the size of point lr = 0 neighborhood 
in which the assumption of smallness of i_& / 6’t + pdv / dt is not valid, since it decrea- 
ses with time, hence for any arbitrarily small p. # 0 an instant i, after which condi- 

tion (2.4) is satisfied, does always exist. Similar reasoning applies also to the proof of 
fulfilment of condition (2.4) in the neighborhood of point lo = p1 of the heating wave- 
front. 

System (4.5) is numerically integrated from l.~ = 0 to l,r = pi, using in the neigh- 
borhood of p = 0 expansion (4.7) for IZ = 0 or (4.8) for 1~ > 0 and selecting the 

independent parameter lJ, (or, respectively, C, ) so as to satisfy the condition U = 0 
for E = 0 . 

Note that system (4.5) can, also, be numerically integrated by commencing at point 
p = pr, using the related expansions (4.10) and selecting the independent parameter 
Pt so as to satisfy the condition Y = 0 for l_r = 0 . The second necessary condition 
E = 1 for lo = 0 can be readily satisfied, owing to the invariance of system (4.5) 
with respect to the linear variation of scales 

P = C,,P, U =q,Q, P =C$i, E =,&E (4.11) 

c li = c ;, c\L == @+fi’*), cp = c ;g(z+‘/?), c ~ 111 E (0) 

s = 1 / (f3 + 1) 

Recalculation by formulas (4.11) yields the solution of the system in the case of numer- 
ical integration from I_L = Irl to lr = 0. 

The distribution of dimensionless magnitudes E, P, U and T/ with respect to the 

self-similar coordinate p is shown in Figs. 1 and 2 for the case of a completely ionized 

gas. 

2 

Fig. 1 Fig. 2 

Figure 1 relates to constant density radiation stream (rz = 0) and Fig. 2 to a linearly 
increasing stream (IL = 1). In these figures the heating wavefronts lie at points with 
coordinates p1 =: 1.48 and 1.08 , respectively, and the dimensionless pressures at the 
front are, respectively, P, = 1.33 and 1.79 (constants U, -~ -0.9~3Ct and CI, -- 
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32.4). Note that a sharply defined heating wavefront (with infinite derivatives) exists 
only, if condition a + p > 1 is satisfied. For a $ fi < 1 the front is not sharply 

defined. 
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A method is proposed for calculating flows induced by fluid sucked into a jet 
outside the boundary layer region. The jet is simulated by a set of sinks whose 
intensity is specified in terms of known solutions of the boundary layer theory. 
With few exceptions [ 1 - 31 problems of the boundary layer theory related to 
jet-like flows of viscous fluids are solved for high Reynolds numbers. In such 

approximation the presence of suction of fluid into the jet is a distinctive fea- 
ture, which has the effect of inducing motion of the fluid in the space outside 
the jet. Since in the external region of flow the velocities of fluid motion and 
the Reynolds numbers are not high, the inertia terms in the Navier-Stokes equa- 

tions can be neglected. A fine jet can be simulated by a system of sinks distri- 
buted along its axis. The intensity of sinks is deremined by solutions which define 
jet-like flows within the limits of the boundary layer theory 14, 51. The linear 

problem of external flow thus formulated can be analytically solved for various 
kinds of jet-like fluid motions. Several examples are presented. 

1. External flow induced by L jet flowing from a narrow tube. 
We introduce a system of spherical coordinates with origin at the jet outlet and angle 8 
measured from the jet axis. We seek components of velocity and pressure in the form 

u, = + f(e), 0, = +- cp (e), + = ; F (0) (1 .I) 


